World Bank, Cali

Optimization of school infrastructure networks

Riccardo Scarinci 29/03/2019, Lausanne

Optimization software

Software Inputs Output School

accessibility limitations

mathematical model Mix Integer Linear Prog.

opt. school interventions

Optimization accessibility of "high schools"

Data input

High-Schools 84 Legend Budget 2019 20 Million USD 84/392 % school proportional 4,500 USD/student Cost increase capacity 1,000 USD/student (USA comp.)* Cost decrease capacity Cost fix modification 70,000 USD (10% avg modif.)* Min capacity 10% less than current Max capacity 10% more than current Scenarios 4 evaluated

*RS estimate

Optimization accessibility of "high schools"

Scenarios

S1 - maximize accessibility

S2 - minimize infrastructural gap

- S3 max accessibility and min infrastructural gap
- S4 max accessibility and min infrastructural gap with equity

S1 - maximize accessibility

Accessibility:	+1.7%	0
Equity:	-2.0%	\otimes
Infrastructural gap:	+3.7%	\otimes
Places added:	741	
Places removed:	0	
Budget used:	100%	
Total school modified:	3	
Computation time:	29 min	

S2 - minimize infrastructural gap

Accessibility:	-1.3%	(
Equity:	+1.8%	(
Infrastructural gap:	-9.3%	
Places added:	646	
Places removed:	1,226	
Budget used:	100%	
Total school modified:	28	
Computation time:	60 min* (5%)	

S3 – max accessibility and min infrastructural gap

Accessibility:	+0.1%	E
Equity:	-0.2%	
Infrastructural gap:	-5.7%	0
Places added:	633	
Places removed:	526	
Budget used:	100%	
Total school modified:	19	
Computation time:	60 min* (9%)	

S4 – max accessibility and min infrastructural gap with equity

Accessibility:	+0.6%	\odot
Equity:	0.0%	Θ
Infrastructural gap:	-3.2%	\odot
Places added:	608	
Places removed:	273	
Budget used:	100%	
Total school modified:	17	
Computation time:	60 min* (0.4%)	

Conclusions

Optimal investment interventions (technical solution, NO POLITICAL DECISION, DSS)

Trade-off between objectives (accessibility, gap)

Output

GIS geodatabse

